Matthieu is working on audio signal processing algorithms that can run on autonomous sensors subject to intermitent power supply. He is a PhD student, advised by Vincent Lostanlen, Pierre-Emmanuel Hladik, and Sébastien Faucou.
Tag: bioacoustics
International Workshop on Vocal Interactivity in-and-between Humans, Animals and Robots (VIHAR)
The 6th edition of the VIHAR workshop will be held in Kos, Greece, as a satellite event of INTERSPEECH. Vincent will chair one of the sessions and present a short paper named Towards Differentiable Motor Control of Bird Vocalizations. Official website: http://vihar-2024.vihar.org
Table ronde “IA en recherche” @ Ifremer
Cet événement, organisé par les doctorants de l’Ifremer, a déjà rassemblé une centaine de participants chaque année autour de présentations orales, de tables rondes et d’ateliers de prise en main. Cette journée est ouverte à toute personne intéressée par l’IA dans la recherche, des applications, les limites et les aspects éthiques.
Rendez-vous le mardi 8 octobre 2024 dans le centre Atlantique de l’Ifremer à Nantes.
BirdVoxDetect: Large-Scale Detection and Classification of Flight Calls for Bird Migration Monitoring @ IEEE TASLP
Sound event classification has the potential to advance our understanding of bird migration. Although it is long known that migratory species have a vocal signature of their own, previous work on automatic flight call classification has been limited in robustness and scope: e.g., covering few recording sites, short acquisition segments, and simplified biological taxonomies. In this paper, we present BirdVoxDetect (BVD), the first full-fledged solution to bird migration monitoring from acoustic sensor network data.
Mixture of Mixups for Multi-label Classification of Rare Anuran Sounds @ EUSIPCO
Multi-label imbalanced classification poses a significant challenge in machine learning, particularly evident in bioacoustics where animal sounds often co-occur, and certain sounds are much less frequent than others. This paper focuses on the specific case of classifying anuran species sounds using the dataset AnuraSet, that contains both class imbalance and multi-label examples. To address these challenges, we introduce Mixture of Mixups (Mix2), a framework that leverages mixing regularization methods Mixup, Manifold Mixup, and MultiMix. Experimental results show that these methods, individually, may lead to suboptimal results; however, when applied randomly, with one selected at each training iteration, they prove effective in addressing the mentioned challenges, particularly for rare classes with few occurrences. Further analysis reveals that the model trained using Mix2 is also proficient in classifying sounds across various levels of class co-occurrences.
Machine listening symposium at World Ecoacoustics Congress
The 10th edition of the World Ecoacoustics Congress was held in Madrid between July 8th and July 12th. In this context, Juan Sebastián Ulloa and myslef have co-organized a special 3-hour symposium titled “Machine listening meets passive acoustic monitoring”. This event is supported by CAPTEO and PETREL projects.
BioacAI doctoral network workshop in Czech Republic
From May 6th to May 10th, 2024, PhD student Yasmine Benhamadi and CNRS scientist Vincent Lostanlen have attended the first internal workshop of the BioacAI doctoral network. The Czech University of Life Sciences in Prague hosted the event in its University Forest Establishment, an ancient castle in the town of Kostelec nad Černými lesy.
11 juin 2024 : colloque “Capteurs acoustiques en environnement” à Nantes
Le son, en tant que vecteur d’information, est une aubaine pour les sciences naturelles. À l’heure des smartphones et de l’Internet des objets, il devient possible de décrire dans le détail les propriétés acoustiques d’un environnement, que celui-ci soit naturel ou industrialisé. Des algorithmes d’intelligence artificielle (IA) sont alors requis pour traiter automatiquement les données massives ainsi collectées et interagir utilement avec l’humain. Mais en pratique, un tel programme de recherche soulève des problèmes de fiabilité, de durabilité, de sécurité informatique et de mesure de l’incertitude.
PhD offer: Machine learning on solar-powered environmental sensors
Many biological and geophysical phenomena follow a near-periodic day-night cycle, known as circadian rhythm. When designing AI-enabled autonomous sensors for environmental modeling, this circadian rhythm poses both a challenge and an opportunity.
PhD offer: Developmental robotics of birdsong
The Neurocybernetic team of ETIS Lab (CNRS, CY Cergy-Paris University, ENSEA) is seeking applicants for a fully funded PhD place providing an exciting opportunity to pursue a postgraduate research in the fields of bio/neuro-inspired robotics, ethology, neuroscience.Webpage: https://www.etis-lab.fr/neuro/ This PhD is funded by the French ANR, under the 4 years’ project “Nirvana” on sensorimotor integration of… Continue reading PhD offer: Developmental robotics of birdsong