Robust Deconvolution with Parseval Filterbanks

Communications dans un congrès

Auteurs : Rossen Nenov, Vincent Lostanlen, Peter Balazs.

Conférence : IEEE International Conference on Sampling Theory and Applications (SampTA)

Date de publication : 2025

DeconvolutionDigital signal processingGradient methodsSignal reconstructionSparse approximation
Lien vers le dépot HAL

Abstract


This article introduces two contributions: Multiband Robust Deconvolution (Multi-RDCP), a regularization approach for deconvolution in the presence of noise; and Subband-Normalized Adaptive Kernel Evaluation (SNAKE), a first-order iterative algorithm designed to efficiently solve the resulting optimization problem. Multi-RDCP resembles Group LASSO in that it promotes sparsity across the subband spectrum of the solution. We prove that SNAKE enjoys fast convergence rates and numerical simulations illustrate the efficiency of SNAKE for deconvolving noisy oscillatory signals.